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The quest for electroweak symmetry breaking
is the search for the dynamics that generates the Goldstone bosons that
are the source of mass for the W and Z.

Possible Choices for EWSB dynamics:

Weakly-interacting self coupled elementary scalar dynamics
=>» Higgs boson

Strong-interaction dynamics among new fermions (mediated perhaps by gauge forces)

The dynamics of electroweak symmetry breaking must be exposed
at or below the 1 TeV energy scale

Both mechanisms generate new phenomena at the LHC

Finding the Higgs boson is the key to discover if our simplest
explanation for the origin of mass is indeed correct.



What do we know about the Higgs how?

Although the Higgs boson has not been seen and its mass is unknown, it
enters via loop corrections in electroweak observables: particle masses,
decay rates, etc p
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All electroweak parameters have at most logarithmic dependence on 3y
However, preferred value of m 5 can be determined

Within the SM, precision measurements
? my, <260 GeV at 95% C.L.

. Direct searches at LEP:

*
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> 114 .6GeV  But, tantalizing hint of a Higgs with mass about
115 - 116 GeV (just at the edge of LEP reach)
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What can we learn at hadron colliders?
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SM Hiqgs Discovery Reach at the Tevatron
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Quite challenging! Evidence of a signal will mean that the Higgs has strong
(SM-like) couplings to W and Z



Signal significance
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SM Hiqgs Discovery Reach at the LHC
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LHC can search for a Higgs via many channels, already in the first few years

If the SM Higgs exists = It will be discovered at LHC !



Standard Model = effective theory
Supersymmetry = interesting alternative BSM

If SUSY exists, many of its most important motivations
demand some SUSY particles at the TeV range or below

solve the hierarchy problem

generate EWSB by quantum corrections

Allow for gauge coupling unification at a scale =10'°GeV
induce a large top quark mass from Yukawa coupling evolution.
provide a good dark matter candidate: the lightest neutralino
provide a possible solution to baryogenesis

Minimal model: 2 Higgs SU(2) doublets 5 physical states:
2 CP-even h,H with mixing angle
1CP-odd A and a charged pair H

x Higgs Physics: important tool in understanding Supersymmetry



MSSM Higgs sector at Tree-Level
Hi, Hy doublets = 2 CP-even Higgs h, H 1 CP-odd state A 2 charged Higps H*

Higgs masses and couplings given in terms of two parameters:
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mﬂ[mH—mh]

(norm. to SM)

hZZ, hWWW, ZHA, WHTH — sin(8 — o)

HZZ, HWW, ZhA, WH*h — cos(F — o)
(h,HA) ui — cosa/sin3, sina/sinB, 1/tang
(h,H,A) dd/I+l- — —sina/cos8, cosa/cosf, tanj3

If mag >» My — decoupling limit

e cos(f —a)=0 up to correc. @{m%fﬂzi)

e lightest Higgs has SM-like couplings and mass m% ~ ??1"?} cos? 213

e other Higes bosons: heavy and roughly degenerate

ma ™~ My mﬁ up to correc. O(m%fmi)



Supersymmetric relations between couplings imply 771, < 11,

After quantum corrections, Higgs mass shifted due to incomplete
cancellation of particles and superparticles in the loops
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Main Quantum effects: m t4 enhancement ; dependence on the stop
mixing Y o logarithmic sensitivity to the stop mass (averaged: M G )

Upper bound : oy A0S, Tlagnen MO, FebH
m, < 135GeV |
stringent test of the MSSM
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Tevatron Prospects for Neutral Higgs Searches

Fix set of SUSY particle masses and vary m , and tan p
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Present Tevatron reach in the
CP conserving MSSM Higgs sector
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With about 5 fb-1 one can expect to test the regime with:

tan f =10 andm, =100 GeV ———tan =50 and m, =250 GeV



LHC Prospects for MSSM Higgs Discovery:

MHMAX scenario
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MHMAZX scenario

excluded by LEP (prel.)
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Prospects for SM-like

Higgs searches in the

Max. Mix. scenario at LHC

* VBF with decay into taus is the

decisive channel for 30 fb-1

* h>7Y) and h >bb only relevant for

high luminosity

M.C., Mrenna, Wagner
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Prospects for SM-like

Higgs searches in the
2 scenario at LHC

* Complementarity between VBF

and h-> ¥/ channels for 30 fb-1

« {th-> ttbb channel only relevant for

high luminosity
M.C., Mrenna, Wagner
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CP Violation in the MSSM

In low energy SUSY, there are exira CP-violating phases beyond the CKM
ones, associated with complex SUSY breaking parameters

One of the most important consequences of CP-violation is its possible impact
on the explanation of the matter-antimatter asymmetry.

Electroweak baryogenesis may be realized even in the simplest SUSY extension of
the SM, but demands new sources of CP-violation associated with the third generation
sector and/or the gaugino-Higgsino sector.

These CP-violating phases may induce effects on observables such as new
contributions to the e.d.m. of the electron and the neutron.

However, effects on observables are small in large regions of parameter space

In the Higgs sector at tree-level, all CP-violating phases, if present, may be
absorved into a redefinition of the fields.

CP-violation in the Higgs sector appears at the loop-level,
associated with third generation scalars and/or the gaugino/Higgsino sector,
but can still have important consequences for Higgs physics



Higgs Potential =& Quantum Corrections

Minimization should be performed with respect to real and imaginary parts of Higps
Auctuations H1D = g + iA4 HE = fp + £An

Parforming a rotation: Ay, A9 =— A, GV (Goldstona)

Main effect of CP-Violation is the mixing { Hy
of the three neutral Higgs bosons oy =o' Hy
o H
In the base (4. ¢1,¢2): 2 3
[ 2 2 \T M2 is similar to the mass matrix in
, |my (Mg) = i
MN — 5 , the CP conserving case, and
Mg, Mgy | M7Z is the mass of the would-be CP-odd Higes.
M;P gives the mixing between would-be CP-odd i
. 1,82,51,87
and CP-even sates, predominantly governed by stop T be . b
induced loop effects ) a ¢ e
, m, HA,
Mg 16 72 v2 | M2 -
TV S t1,12,13, 5

Gluino phase relevant at two-loop level. Guagino effects may be enhanced for large tan beta



Comments on Higgs Boson Mixing

m?;,_ no longer a physical parameter, but the charged Higgs mass M4 can be used as
a physical parameter, together with Mg, |p|, [A;|, arg(4;) and arg(M3)

Elements of matrix O are similar to cos& and sin in the CP-conserving
case. But third row and column are zero in the non-diagonal

elements in such a case.

Three neutral Higgs bosons can now couple to the vector bosons in a way
similar to the SM Higgs.

Similar to the decoupling limit in the CP-conserving case, for large values
of the charged Higgs mass, light Higgs boson with Standard Model properties.



Interaction Lagrangian of W.Z bosons with mixtures
of CP even and CP odd Higqgs bosons

|
cos 30 +sin 3 Ogy

JH,VV =
gH,H,Z = Oz: (cos B Oa; —sin B O15) — Oz5 (cos B Oq; —sin 8 O14)
qu_H_W'I' — COB .5 ﬂzi — Eiﬂ.5 Ilr:::l:l.'li- + 'E:E:’E-a'. ” r ]-:I- Elll

(43 — analogous to sin(# — &) & cos(F — =)

- All couplings as a function of two:  8n,vv = €ix 8unz

: 3 2 _ 3 2 2 _ o2max - 4. r
and sum rules: Zi:l Of,7z2 = 1 Z-a.:l Of,zz Mr, = Mg, %= 135 GeV

(equiv. to CP-conserv. case)
upper bound remains the same

- Effective mixing between the lightest Higgs and the heavy ones is zero
= H, is SM-like
« Mixing in the heavy sector still relevant !
2
A
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A A+ mi



Yukawa Couplings: CP violating vertex effects
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*The one loop effects to the Yukawa couplings introduce CP-violating
effects which are independent of the Higgs mixing

, HuwTrip
the phase of the superfield hy = — - ; ; :
bg is real and positive: v 2Myyrcos 3 [l + Jhb; hy + lfi\.hb; hb] tanﬁ]



Higgs boson-quark Lagrangian

taking into account both CP-violating self-energy and vertex effects
(similar vertex effects in the up quark sector, but no tan  enhancement)

Hi :_ZH [(gwmy /2My, )d (ngd +ngd 7s)d

+ (ngu /ZMW) u (gHiuu +gHiuu 7/5) u]
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= h, +0h,+Ah tan S cos 3 cos
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CP-Violating Higas bosons at LEP: challenqmq scenarios
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« Another interesting example within
the CPX Scenario:

Mg, Mg, [ GeV]
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CPX scenario: no lower bound on M,;, from LEP!

- H, decouples from the Z and H, and H; may be out of kinematic reach.
» or reduced couplings of H,to Z and extended regions were H, decays
H,H, and the H,'s decay into b’s
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my, < 130 GeV = major role of CP-violating effects
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Impact of the top quark mass on the results

= - MSSM CPX | |
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main effect for tan f=4-10 is due to opening of
H,Z, H,Z channels as well as H{H,



CP-Violating Higas bosons at the Tevatron

Example:
« MH1 about 90 GeV but out of the

reach of LEP.
* All other channels
kinematically unaccessible

 MH1 also hopeless at teh Tevatron due
to reduced W/Z H1 coupling

* H1 and H2 masses have little variation
with phase of At, but couplings to gauge
bosons vary importantly

The Tevatron has a chance of having
a first glance at H2.

Most crucial however, explore similar regions but
for
0 MH2 >2M H,

0
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Approximate LEP exclusion and Tevatron (30 / 5 fb~1) and LHC (5 discovery) limits
in the mpg, —tan 3 plane for CPX scenarios with different phases (arg Mz) = arg(A; )

LEP(95)/TeV(36)/LHC(56) for CPX,,, 15° lines — Tevatron: W /4 H;(— bh)
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grey — LEP exclusion. (m, =174.3GeV)

low tanb and low m,; region
remains uncover in the
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H,—> H,H, analysis
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Similar plot as above but showing different channels separately
and in the tan —mg4+ plane
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M.C. Ellis, Mrenna, Pilaftsis, Wagner



my,, 1105 t0 120 GeV
my, , 140 to 180 GeV

my, <70GeV

0

- H,/H; channels: VBF and ttHi

Present limitations:

No study for H, below 70 GeV
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Can LHC discover the SM-like Higgs
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Looking for H, - H, H,

Standard signatures not sufficient to probe the presence of a
SM-like Higgs bosons decaying into lighter Higgs states.

Lighter states have weak couplings to the weak gauge bosons, but
large couplings to third generation down quarks and leptons.

Possibility of looking for two taus and two bottoms (jets) signatures

at LHC in the weak boson fusion production channel of two CP-odd
like Higgs bosons. (J. Gunion et al. with 300 fb-1 at the LHC, NMSSM)

A detailed experimental simulation should be performed to test
this possibility.



CPsuper

Code to compute Higgs spectrum, couplings and decay modes in
the presence of CP-violation

Lee, Pilaftsis, M.C., Choi, Drees,Ellis, Lee,Wagner.’03
CP-conserving case: Set phases to zero. Similar to HDECAY, but

with the advantage that charged and neutral sector treated with
same rate of accuracy.

Combines calculation of masses and mixings by M.C., Ellis,
Pilaftsis, Wagner. with analysis of decays by Choi, Drees, Hagiwara,

Lee and Song.

Available at

http://theory.ph.man.ac.uk/~jslee/CPsuperH.html



Conclusions

Low energy supersymmetry has an important impact on Higgs physics.

It leads to definite predictions to the Higgs boson couplings to
fermions and gauge bosons.

Such couplings, however, are affected by radiative corrections induced
by supersymmetric particle loops.

CP-violation in the Higgs sector is well motivated and should be
studied in detall. It affects the searches for Higgs bosons at hadron
and lepton colliders in an important way.

At a minimum, it stresses the relevance of studying non-standard
Higgs boson production and decay channels at lepton and hadron
colliders.



